Using remotely sensed temperature to estimate climate response functions

Temperature data are commonly used to estimate the sensitivity of many societally relevant outcomes, including crop yields, mortality, and economic output, to ongoing climate changes. In many tropical regions, however, temperature measures are often very sparse and unreliable, limiting our ability to understand climate change impacts.

 

 

 

 

 

 

 

 

 

In this paper we evaluated satellite measures of near-surface temperature (Ts) as an alternative to traditional air temperatures (Ta) from weather stations, and in particular their ability to replace Ta in econometric estimation of climate response functions. We showed that for maize yields in Africa and the United States, and for economic output in the United States, regressions that use Ts produce very similar results to those using Ta, despite the fact that daily correlation between the two temperature measures is often low.

 

 

 

 

 

 

 

 

 

Moreover, for regions such as Africa with poor station coverage, we found that models with Ts outperform models with Ta. Our results indicate that Ts can be used to study climate impacts in areas with limited station data. For details, see the paper here.

Fig 1: Ground Station Availability

Fig 2: Maize Yield Applications

Fig 3: U.S. County GDP Application

Fig 4: Overview of Main Results

Sam Heft-Neal, David Lobell and Marshall Burke

Using remotely sensed temperature to estimate climate response functions

Environmental Research Letter, 2017, Volume 12, Number 1.